lacrime2020 <- lacrime[2:148206, ]lacrime2020$Vict.Descent[lacrime2020$Vict.Descent ==""] <-"X"lacrime2020$Vict.Descent[lacrime2020$Vict.Descent =="C"] <-"A"lacrime2020$Vict.Descent[lacrime2020$Vict.Descent =="F"] <-"A"lacrime2020$Vict.Descent[lacrime2020$Vict.Descent =="J"] <-"A"lacrime2020$Vict.Descent[lacrime2020$Vict.Descent =="K"] <-"A"lacrime2020$Vict.Descent[lacrime2020$Vict.Descent =="V"] <-"A"filtered_data <- lacrime2020 %>%filter(Vict.Descent =="A")dates_for_letter_A <- filtered_data$DATE.OCCfiltered_data$DATE.OCC <-as.Date(filtered_data$DATE.OCC)summary_data <- filtered_data %>%group_by(DATE.OCC) %>%summarize(Count =n())plot(summary_data$DATE.OCC, summary_data$Count, type ="p", pch =1, cex =0.4,col ="blue", xlab ="Date Occurred", ylab ="Number of Victims", main ="Number of Asian Victims Daily in Los Angeles 2020", mgp =c(3, 1, 0),xaxt ="n", yaxt ="n")axis(1, at =seq(min(summary_data$DATE.OCC), max(summary_data$DATE.OCC), by ="month"), labels =format(seq(min(summary_data$DATE.OCC), max(summary_data$DATE.OCC), by ="month"), "%b %Y"), cex.axis =0.4)axis(2, las =0, cex.axis =0.4)lockdown_date <-as.Date("2020-03-19")text(x = lockdown_date, y =max(summary_data$Count), labels ="Lockdown 3/19", pos =1, offset =1, cex =0.4)travel_ban <-as.Date("2020-01-31")text(x = travel_ban, y =39, labels ="Travel Ban 1/31", pos =1, offset =1, cex =0.4)model <-lm(summary_data$Count ~as.numeric(summary_data$DATE.OCC))abline(model, col ="red")
Chart 2
lacrime2021 <- lacrime[148207:303895, ]lacrime2021$Vict.Descent[lacrime2021$Vict.Descent ==""] <-"X"lacrime2021$Vict.Descent[lacrime2021$Vict.Descent =="C"] <-"A"lacrime2021$Vict.Descent[lacrime2021$Vict.Descent =="F"] <-"A"lacrime2021$Vict.Descent[lacrime2021$Vict.Descent =="J"] <-"A"lacrime2021$Vict.Descent[lacrime2021$Vict.Descent =="K"] <-"A"lacrime2021$Vict.Descent[lacrime2021$Vict.Descent =="V"] <-"A"# Filter the rows with "A" in the Vict.Descent columnfiltered_data_2 <- lacrime2021 %>%filter(Vict.Descent =="A")# Extract the dates from the filtered datadates_for_letter_A_2 <- filtered_data$DATE.OCC# Make sure the "Date Occurred" column is in the date formatfiltered_data_2$DATE.OCC <-as.Date(filtered_data_2$DATE.OCC)summary_data_2 <- filtered_data_2 %>%group_by(DATE.OCC) %>%summarize(Count =n())# Create a time-series scatterplotplot(summary_data_2$DATE.OCC, summary_data_2$Count, type ="p", pch =1, cex =0.4,col ="blue", xlab ="Date Occurred", ylab ="Number of Victims", main ="Number of Asian Victims Daily in Los Angeles 2021", mgp =c(3, 1, 0),xaxt ="n", yaxt ="n")axis(1, at =seq(min(summary_data_2$DATE.OCC), max(summary_data_2$DATE.OCC), by ="month"), labels =format(seq(min(summary_data_2$DATE.OCC), max(summary_data_2$DATE.OCC), by ="month"), "%b %Y"), cex.axis =0.4)axis(2, las =0, cex.axis =0.4)
Chart 3
lacrime2022 <- lacrime[303896:404565, ]lacrime2022$Vict.Descent[lacrime2022$Vict.Descent ==""] <-"X"lacrime2022$Vict.Descent[lacrime2022$Vict.Descent =="C"] <-"A"lacrime2022$Vict.Descent[lacrime2022$Vict.Descent =="F"] <-"A"lacrime2022$Vict.Descent[lacrime2022$Vict.Descent =="J"] <-"A"lacrime2022$Vict.Descent[lacrime2022$Vict.Descent =="K"] <-"A"lacrime2022$Vict.Descent[lacrime2022$Vict.Descent =="V"] <-"A"filtered_data_3 <- lacrime2022 %>%filter(Vict.Descent =="A")filtered_data_3$DATE.OCC <-as.Date(filtered_data_3$DATE.OCC)filtered_data_3 <- filtered_data_3[order(filtered_data_3$DATE.OCC), ]summary_data_3 <- filtered_data_3 %>%group_by(DATE.OCC) %>%summarize(Count =n())# Create a time-series scatterplot with no x-axis labelsplot(summary_data_3$DATE.OCC, summary_data_3$Count, type ="p", pch =1, cex =0.4,col ="blue", xlab ="Date Occurred", ylab ="Number of Victims", main ="Number of Asian Victims Daily in Los Angeles 2022", mgp =c(3, 1, 0), xaxt ="n", yaxt ="n")axis(1, at =seq(min(summary_data_3$DATE.OCC), max(summary_data_3$DATE.OCC), by ="month"), labels =format(seq(min(summary_data_3$DATE.OCC), max(summary_data_3$DATE.OCC), by ="month"), "%b %Y"), cex.axis =0.6)axis(2, las =0, cex.axis =0.6)